Structural relaxation around Co²⁺ in synthetic blue (Mg,Co)Al₂O₄spinelcrystals

G.B. Andreozzi¹, V. D'Ippolito¹, F. Bosi¹ and U. Halenius²

Co-bearing spinel crystals are rare in nature and actively sought as gemstonesbecause of their vivid blue color, while synthetic Co-spinel powders are largely used as ceramic pigments. In the present work, single crystals belonging to spinel s.s. (MgAl₂O₄) - cobalt spinel (CoAl₂O₄) series were synthesized by flux growth method with Na₂B₄O₇ as flux.Low cooling rates (2°C/h) and linear temperature profiles were applied in the thermal interval 1200-800°C. Thermal runs were performed in reducing atmosphere (10⁻⁸ - 10⁻¹⁵bars) created by a continuous flow of CO₂/H₂ with a ratio of 100/4 cm³/min. With increasing Co contents, the crystals varied in colour from light blue to intensely dark blue. Selected crystals were investigated by electron-microanalysis, single-crystal X-ray diffraction and UV-VIS-NIR-MIR spectroscopy to obtain the actual chemical composition, structural characterization, cation site population and quantitative optical absorption. The crystals are chemically homogeneous, with composition dominated by the $\text{Co}^{2^+} \to \text{Mg}$ substitution and structural parameters a, uregularly increasing with Co^{2^+} . Along the series, Co^{2^+} shows a marked preference for the tetrahedral coordination with respect to Mg. The optical absorption spectra, measured between 4000 and 35000 cm⁻¹, exhibit three spin-allowed electronic d-d transitions at ~17000, ~8000 and ~4500 cm⁻¹, attributed to the tetrahedrally coordinated Co²⁺. Because no absorption bands related to either octahedrally coordinatedCo²⁺ or tetrahedrally/octahedrally coordinated Co³⁺ are observed, the recognized increase of absorption of the spin-allowed Co²⁺d-d bands with increasing Co-content indirectly causes the colour change from light blue to intensely dark blue. The energy of the absorption band at ~ 4.500 cm⁻¹ is directly proportional to the crystal field, and 10 Dq values are directly related to the bond distance, indicating that in the MgAl₂O₄-CoAl₂O₄ solid solution series the local arrangement of atoms around Co²⁺ is almost fully relaxed.

¹Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro5, 00185 Roma, Italy

²Department of Mineralogy, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden